Recitation – Week 10

Pranut Jain

Announcement

- Project 2 grading notes
- Recitation slides at http://people.cs.pitt.edu/~pranut/C\$1550/

Plan for today

- Not Frequently Used Page Replacement Algorithm
- ...With Ageing
- Working Sets
- WS Clock Page Replacement

Not frequently used algorithm (NFU)

- Bases decision of frequency of use rather than recency
- Associate a counter with each page
- oxdot On every clock interrupt, the OS looks at each page.
 - * If the Reference Bit is set...
 - · Increment that page's counter & clear the bit.
- The counter approximates how often the page is used.
- For replacement, choose the page with lowest counter.

Not frequently used algorithm (NFU)

□ <u>Problem:</u>

- Some page may be heavily used
 - · ---> Its counter is large
- The program's behavior changes
 - Now, this page is not used ever again (or only rarely)
- This algorithm never forgets!
 - · This page will never be chosen for replacement!
- We may want to combine frequency and recency

Modified NFU with aging

- Associate a counter with each page
- On every clock tick, the OS looks at each page.
 - * Shift the counter right 1 bit (divide its value by 2)
 - * If the Reference Bit is set...
 - · Set the most-significant bit
 - · Clear the Referenced Bit

```
T_1 100000 = 32

T_2 010000 = 16

T_3 001000 = 8

T_4 000100 = 4

T_5 100010 = 34
```

- Demand paging
 - * Pages are only loaded when accessed
 - * When process begins, all pages marked INVALID

- Demand paging
 - * Pages are only loaded when accessed
 - * When process begins, all pages marked INVALID
- Locality of reference
 - * Processes tend to use only a small fraction of their pages

Demand paging

- * Pages are only loaded when accessed
- When process begins, all pages marked INVALID

Locality of Reference

* Processes tend to use only a small fraction of their pages

Working Set

- The set of pages a process needs
- * If working set is in memory, no page faults
- What if you can't get working set into memory?

Thrashing

- * If you can't get working set into memory page faults occur every few instructions
- * Little work gets done
- * Most of the CPU's time is going on overhead

- Based on prepaging (prefetching)
 - Load pages before they are needed
- □ Main idea:
 - Try to identify the process's "working set"
- How big is the working set?
 - * Look at the last K memory references
 - * As K gets bigger, more pages needed.
 - In the limit, all pages are needed.

□ The size of the working set:

people.sju.edu/~ggrevera/csc4035/

J Idea:

- * Look back over the last T msec of time
- Which pages were referenced?
 - · This is the working set.

Current Virtual Time

Only consider how much CPU time this process has seen.

Implementation

- On each clock tick, look at each page
- * Was it referenced?
 - · Yes: Make a note of Current Virtual Time
- If a page has not been used in the last T msec,
 - It is not in the working set!
 - Evict it; write it out if it is dirty.

Working set algorithm

Fig. 4-21. The working sepergetal spittern/~ggrevera/csc4035/

WSClock page replacement algorithm

- An implementation of the working set algorithm
- All pages are kept in a circular list (ring)
- As pages are added, they go into the ring
- The "clock hand" advances around the ring
- Each entry contains "time of last use"
- Upon a page fault...
 - * If Reference Bit = 1...
 - · Page is in use now. Do not evict.
 - · Clear the Referenced Bit.
 - · Update the "time of last use" field.

WSClock page replacement algorithm

- □ If Reference Bit = 0
 - * If the age of the page is less than T...
 - This page is in the working set.
 - Advance the hand and keep looking
 - * If the age of the page is greater than T...
 - · If page is clean
 - Reclaim the frame and we are done!
 - · If page is dirty
 - Schedule a write for the page
 - Advance the hand and keep looking

2204 Current virtual time clear r bit and advance clock 1620 0 1620 0 hand. 2032 1 2032 1 2084 1 2020 1 2003 1 2020 1 2003 1 1980 1 1980 1 2014 0 2014 1 1213 0 1213 0 Time of last use (b) (a) 1620 0 1620 0 2032 1 2032 1 2084 1 2084 1 2020 1 2020 1 2003 1 2003 1 1980 1 2014 0 1980 1 2014 0 Replace old and 1213 0 2204 1 New page advance.

WSClock page replacement

Fig. 4-22. Operation of the WSClock algorithm. (a) and (b) give an example of what happens when R = 1. (c) and (d) give an example of R = 0.

(d)

(c)